Free Open Source Self Correcting-7B AI Model. A Breakthrough in AI-Driven Deep Research The new paper titled "PokeeResearch: Effective Deep Research via Reinforcement Learning from AI Feedback and Robust Reasoning Scaffold," introduces a groundbreaking 7B-parameter open-source AI agent designed to tackle complex research tasks with robustness and accuracy. This work addresses critical limitations in current tool-augmented large language model, such as shallow retrieval, brittle tool-use, and weak alignment to factual correctness. By leveraging reinforcement learning from AI feedback (RLAIF) and a sophisticated reasoning scaffold, PokeeResearch-7B sets a new standard for small-scale models in deep research, rivaling larger proprietary systems while remaining fully open-source. The core of PokeeResearch-7B lies in its ability to decompose intricate queries, retrieve external evidence from tools like web searches, and synthesize grounded, verifiable responses. Traditional AI agents often falter when tools fail or return noisy data, leading to hallucinations or incomplete answers. PokeeResearch overcomes these issues through an annotation-free RLAIF framework, where the model is trained using LLM-generated reward signals that evaluate factual accuracy, citation faithfulness, and adherence to user instructions. This self-improving loop allows the agent to optimize its policies without human annotations, making it scalable and efficient. Complementing this is a chain-of-thought (CoT)-driven multi-call reasoning scaffold, which enables the agent to run multiple research threads in parallel, self-verify outputs for contradictions, and adaptively recover from errors. For instance, if a web tool returns irrelevant or erroneous information, the agent can pivot to alternative paths, ensuring resilient performance. The model's training emphasizes semantic correctness over superficial metrics like token overlap, allowing it to distinguish between plausible-sounding but incorrect responses and truly accurate ones. Evaluated across 10 popular deep research benchmarks, PokeeResearch-7B demonstrates state-of-the-art results for models of its size. On challenging tasks like HLE (HotpotQA with Long Evidence), it achieves 17.6% accuracy; on GAIA (General AI Assistant benchmark), it scores 41.3%; and on BrowseComp (a web-browsing comprehension test), it reaches 8.4%. These figures surpass baselines like DeepResearcher by up to 17 points, highlighting the agent's superiority in handling real-world, multi-step research scenarios. This not only advances the technical abilities of local AI but also democratizes powerful research tools, potentially accelerating progress toward more capable general AI systems. I am running this model now. The model is at Paper:
2.44萬
43
本頁面內容由第三方提供。除非另有說明,OKX 不是所引用文章的作者,也不對此類材料主張任何版權。該內容僅供參考,並不代表 OKX 觀點,不作為任何形式的認可,也不應被視為投資建議或購買或出售數字資產的招攬。在使用生成式人工智能提供摘要或其他信息的情況下,此類人工智能生成的內容可能不準確或不一致。請閱讀鏈接文章,瞭解更多詳情和信息。OKX 不對第三方網站上的內容負責。包含穩定幣、NFTs 等在內的數字資產涉及較高程度的風險,其價值可能會產生較大波動。請根據自身財務狀況,仔細考慮交易或持有數字資產是否適合您。